Ocena jakości próbek krwi przesyłanych do laboratorium w aspekcie błędów przedanalitycznych – doświadczenia własne

Faza przedlaboratoryjna w skład której wchodzi również jakość pobranego materiału, będąca w dużej mierze zależna od błędów popelnianych przez personel jest istotną częścią procesu generacji prawidłowego wyniku. Potencjalny wpływ na wynik mają również niezależne cechy materiału, traktowane jako czynniki interferujące.

W pracy oceniono 35 696 próbek materiału, z czego:
28 788 były to próbki krwi pełnej pobrane na:
- antykoagulant:
 - 7 495 do oznaczeń morfologii,
 - 2 453 do oznaczeń OB,
 - 971 do oznaczeń gazometrii lub gazometrii z metabolitami lub/elektrolitami,
 - 5 169 do oznaczeń układu krzepnięcia;
- skrzep
 - 12 700 krew pełna do oznaczeń biochemicznych i immunologicznych
 a także 6 908 niezależnych próbek surowicy lub osocza pod względem potencjalnych czynników interferujących (bilirubina, lipemia, lekka hemoliza). Odrzucono w zależności od rodzaju materiału od 0,98% do 2,37% próbek, a głównymi przyczynami odrzucenia była nasilona hemoliza (44%) i obecność skrzepów w próbkach pobranych na antykoagulant (49%). W 24,04% surowic analizowanych w trybie pilnym i 15,57% w trybie rutynowym stwierdzono obecność czynników interferujących, mogących stanowić potencjalne źródło błędu.
Summary

EVALUATION OF BLOOD SAMPLES IN ASPECT OF PREANALYTICAL ERRORS – OWN EXPERIENCE

Preanalytical phase includes the quality of biological material which is mainly related to human errors at the time of blood collection. Other independent factors like bilirubin, lipemia and slight hemolysis should also be treated as potential interferences.

We evaluated:
35 696 sample of blood;
28 788 whole blood collected on:
• anticoagulants:
 – 7 495 CBC
 – 2 453 ESR
 – 971 blood gases, metabolitem and electrolytes
 – 5 169 hemostasis
• 12 700 whole blood sample for biochemistry and immunochemistry.

Additionally 6 908 serum or plasma evaluated in aspect of potentially interfering factors (bilirubin lipemia, slight hemolysis). Depending on kind of blood samples 0,98% - 2,37% were rejected mainly for hemolysis (44%) or clots (49%). In 24,04% sera analyzed as STAT and in 15,57% as routine the presence of potentially interfering factors was observed.

Key words: preanalytical errors, quality of blood samples, laboratory tests

Wstęp

Błąd w medycynie laboratoryjnej może przekładać się na błędne rozpoznanie, złe lub zbyt późno rozpoczęte leczenie czyli jest błędem w medycynie klinicznej [9]. Wprowadzenie nowych technologii w medycynie laboratoryjnej i przerzuczenie odpowiedzialności za analityczną jakość wyników na producenta, a także rozwinięcie tak wewnętrz- jak i międzylaborytoryjnej kontroli sprawiło, że błędy analityczne są przyczyną tylko 10-20% wszystkich błędnych wyników, podczas gdy zwraca się coraz większą uwagę na wpływ innych czynników, a w tym jakości próbek dostarczanych do badań [1,4]. Takie czynniki jak nieprzestrzeganie standardów pobrania lub pozyskania materiału albo zwykłe ludzkie pomyłki, mogą prowadzić do istotnych zmian, których konsekwencją może być brak wyniku, lub wynik niezgodny ze stanem klinicznym pacjenta. Jest to nie tylko obciążające dla samego pacjenta, ponieważ może skutkować wdrożeniem nieodpowiedniego postępowania medycznego, ale również pociąga za sobą koszty dodatkowych oznaczeń. Carraro i wsp. [4] wykazały wprawdzie, że błędne wyniki mające bezpośredni wpływ na dalsze postępowanie z pacjentem stanowiły tylko 24,4% tym niemniej należy dążyć do jak najskuteczniej-szego zmniejszenia tej liczby. Omawiając wpływ różnych czynników przedanalitycznych na ostateczny wynik badania laboratoryjnego, należy uwzględnić:

– błędy, do wyeliminowania których można dążyć poprzez wprowadzenie i przestrzeganie określonych procedur (pobranie, identyfikacja próbek, przechowywanie materiału itp.)
interferencje, czyli wpływ czynników niezależnych, wynikających ze stanu pacjenta, które są trudne lub wręcz niemożliwe do wyeliminowania (hiperbilirubinemia, hiperproteinemia, lipemia, hemoliza).

W niektórych przypadkach np. hemolizę można traktować jako błąd pobrania, natomiast nie można wykluczyć przyczyn, niezależnych od pobrania (zmiany in vivo).

Pomimo istotnego wpływu różnych czynników przedanalitycznych na wyniki badań laboratoryjnych niewiele jest danych na temat liczby odrzuconych próbek ze względu na ich nieprzydatność do dalszych analiz, a także liczby próbek, stanowiących potencjalne źródło błędu w zależności od badań, jakie są w nich wykonywane. Różne źródła podają, że odsetek niewłaściwych, wymagających odrzucenia próbek w odniesieniu do liczby ogólnej ocenianych próbek krwi zależy od charakteru placówki, przekroju pacjentów, okresu w jakim oceny są przeprowadzane i waha się od 0,1 do 9,1% [2, 6]. Heterogенноść informacji wynika również z faktu stosowania różnych kryteriów oceny, a wśród nich istotne są takie, jak:

- populacja pacjentów (hospitalizowani, ambulatoryjni)
- tryb wykonywania badań (rutynowy, badania pilne)
- osoby pobierające (pielęgniarki oddziałowe, osoby pobierające w tere
- nowych punktach pobrania)
- wpływ błędu na interpretację kliniczną
- rzeczywista czy potencjalna możliwość interferencji.

Do najczęściej uwzględnianych czynników zalicza się hemolizę, skrzep

wy próbkach pobieranych na antykoagulant, niewłaściwe próbkówek, a także niezachowanie proporcji pomiędzy objętością krwi a antykoagulantem oraz błędy w identyfikacji próbki (pacjenta). Hiperbilirubinemia i lipemia są traktowane raczej jako czynniki interferujące, a nie błędy per se.

Celem pracy było sprawdzenie:

- jak często występują czynniki powodujące odrzucenie próbki,
- jak często występują czynniki mogące mieć potencjalny wpływ na wyniki oznaczeń.

Materiałem do badań były próbkki krwi pochodzące od pacjentów hospitalizowanych w Centralnym Szpitalu Klinicznym jako również objętych opieką ambulatoryjną. Krew pobierana była przez uprawnione, przeszkolone pielęgniarki według obowiązujących procedur, opracowanych przez Laboratorium.

Ogólnie oceniono 35 696 próbek materiału, z czego:

28 788 były to próbki krwi pełnej pobrane na:

* antykoagulant
 - 7 495 do oznaczeń morfologii,
 - 2 453 do oznaczeń OB,
 - 971 do oznaczeń gazometrii lub gazometrii z metabolitami lub/elek
 trolitami,
 - 5 169 do oznaczeń układu krzepnięcia;
* skrzep
 - 12 700 krew pełna do oznaczeń biochemicznych i immunologicznych.

Próbki do oznaczeń gazometrii lub łącznie gazometrii i elektrolitów pobierane były do strzykawek Pico firmy Radiometr, a pozostałe do dedykowanych dla poszczególnych badań próbówek firmy Medlab.
Ocena jakości próbek krwi przesyłanych do laboratorium ...

Ponadto oceniono 6 908 niezależnych próbek surowicy lub osocza pod względem potencjalnych czynników interferujących.
Charakterystykę prowadzonych obserwacji przedstawiono w tabeli I i II. Intensywność czynników interferujących, ocenianych wizualnie podzielono w skali: lekki i nasiony. Dodatkowo oceniane próbki podzielono na grupy:
- przewiadczone do analizy w trybie pilnym (CITO),
- analizowane w trybie rutynowym.

<table>
<thead>
<tr>
<th>Tabela I</th>
<th>Cechy badanego materiału.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czynniki dykwalifikujące próbkę</td>
<td>Grupa badań</td>
</tr>
<tr>
<td>Obecność skrzepu lub mikroskrzepu, oceniana przy przyjęciu lub na stanowisku pracy</td>
<td>morfologia krwi</td>
</tr>
<tr>
<td></td>
<td>OB</td>
</tr>
<tr>
<td></td>
<td>układ krzepnięcia</td>
</tr>
<tr>
<td></td>
<td>gazometria</td>
</tr>
<tr>
<td>Niewłaściwe proporcje pomiędzy antykoagulantem i krwią</td>
<td>morfologia krwi</td>
</tr>
<tr>
<td></td>
<td>OB</td>
</tr>
<tr>
<td></td>
<td>układ krzepnięcia</td>
</tr>
<tr>
<td></td>
<td>gazometria</td>
</tr>
<tr>
<td>Niewłaściwa próbówka</td>
<td>wszystkie grupy badań</td>
</tr>
<tr>
<td>Obecność płęci zegary powietrza w próbkach</td>
<td>gazometria</td>
</tr>
<tr>
<td>Hemoliza próbki</td>
<td>badania biochemiczne</td>
</tr>
<tr>
<td></td>
<td>badania układu krzepnięcia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabela II</th>
<th>Czynniki potencjalnie interferujące.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czynniki potencjalnie interferujące w materiale, w którym wykonywano badania (surowicy i osocza)</td>
<td></td>
</tr>
<tr>
<td>Hemoliza próbki</td>
<td>część badań biochemicznych</td>
</tr>
<tr>
<td>Hiperbilirubinemia</td>
<td>część badań układu krzepnięcia</td>
</tr>
<tr>
<td>Lipemia</td>
<td></td>
</tr>
</tbody>
</table>

Wyniki

Z 28 788 próbek krwi dostarczonych do laboratorium zdyskwalifikowano 352, co stanowiło 1,22%. Rozkład próbek zdyskwalifikowanych przedstawia tabela III.
Przyczyną odrzucenia/niewykonania badania przedstawiono na rycinie 1. Z ogólnej liczby 16 088 próbek pobranych na antykoagulant odrzucono z powodu skrzepów lub mikroskrzepów 172 próbk, co stanowi 1,07 %. (Tabela IV).
Wśród 7 495 próbek krwi żylnej pobranej do badań hematologicznych widoczny gołym okiem skrzep stwierdzono jedynie w 2 przypadkach. W 79 próbkach krwi obecność mikroskrzepów ujawniono dopiero na stanowisku

<table>
<thead>
<tr>
<th>Tabela III</th>
<th>Rozkład próbek zdyskwalifikowanych.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodzaj próbk</td>
<td>Liczba próbek odrzuconych</td>
</tr>
<tr>
<td>Morfologia</td>
<td>(n=7 495)</td>
</tr>
<tr>
<td>OB</td>
<td>(n=2 453)</td>
</tr>
<tr>
<td>Gazometria</td>
<td>(n= 971)</td>
</tr>
<tr>
<td>Układ krzepnięcia</td>
<td>(n=5169)</td>
</tr>
<tr>
<td>Krew pełna pobrana na skrzep</td>
<td>(n=12 700)</td>
</tr>
</tbody>
</table>
Rycina 1
Udział różnych czynników w dyskwalifikacji próbek.

<table>
<thead>
<tr>
<th>Układ krzepnięcia</th>
<th>Liczba próbek ze skrzepem lub mikroskrzepem</th>
<th>% próbek odrzuconych</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=5169)</td>
<td>54</td>
<td>1,05</td>
</tr>
<tr>
<td>Morfologia</td>
<td>81</td>
<td>1,08</td>
</tr>
<tr>
<td>OB</td>
<td>16</td>
<td>0,65</td>
</tr>
<tr>
<td>Gazometria</td>
<td>21</td>
<td>2,16</td>
</tr>
<tr>
<td>Razem</td>
<td>172</td>
<td>1,07</td>
</tr>
</tbody>
</table>

pracy, po wykonaniu badania dodatkowo przelewając próbki po uzyskaniu niskiej wartości płytek.

Z 5 169 próbek do badań układu krzepnięcia w momencie przyjmowania materiału do badania zostało zdyskwalifikowanych 39 próbek ze skrze-
pani widocznymi gotym okiem. Na stanowisku pracy zdyskwalifikowano 15 próbek po uzyskaniu niskiego stężenia fibrynogenu dodatkowo przelep-
wając próbki. Z 971 ocenianych próbek krwi tętniczej do pomiaru gazome-
trii 23 uznano za obarczone błędem, w 21 spośród nich obecny był skrzep.

Z 17 869 próbek (osocza na badania układu krzepnięcia i surowica po
odwirowaniu), ocenianych pod kątem obecności hemolizy za nie nadające
się do badania uznano łącznie 154 /0,9%/ próbkę w tym 0,98% próbek
surowicy.

 Wyniki oceny makroskopowej próbek pod kątem typowych, potencjal-
nych czynników interferujących przedstawiono w tabeli V.

Z 6 908 próbek surowicy, uzyskanej z krwi żylnej, pobranej celem uzys-
kania surowicy do badań biochemicznych 1140 stanowiły próbki analizo-
wane w trybie pilnym (CITO). W tej grupie w 68 próbkach stwierdzono
hemolizę, w tym w 11 próbkach nasiloną, w 164 było podwyższone stężenie
bilirubiny (tzw. próbki żółtaczkowe), z czego 31 to próbki z nasilonej hiper-
bilirubinemii. 42 próbkę były lipemiczne, w tym w 13 lipemia była znaczna
(tabela VI).

Tabela V

Czynniki interferujące w osoczu i surowicy.

<table>
<thead>
<tr>
<th></th>
<th>Osocze do badań układu krzepnięcia</th>
<th>Surowica</th>
<th>Razem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoliza</td>
<td>116 = 1,6%</td>
<td>427 = 3,5%</td>
<td>543 = 4,5%</td>
</tr>
<tr>
<td>Lipemia</td>
<td>40 = 0,3%</td>
<td>279 = 2,32%</td>
<td>319 = 2,6%</td>
</tr>
<tr>
<td>Hiperbilirubinemia</td>
<td>102 = 0,9%</td>
<td>466 = 3,9%</td>
<td>568 = 4,7%</td>
</tr>
<tr>
<td>Ogółem próbek</td>
<td>11 987</td>
<td></td>
<td>1 430 (11,8%)</td>
</tr>
</tbody>
</table>

Tabela VI

 Wyniki oceny próbek surowicy przeznaczonych do wykonania w trybie piłnym.

<table>
<thead>
<tr>
<th>Liczba wszystkich próbek</th>
<th>Liczba próbek w trybie CITO</th>
<th>Tryb cito wykonywania badań</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hemoliza</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nasilona</td>
</tr>
<tr>
<td>6 908</td>
<td>1 140</td>
<td>11</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>0,97</td>
</tr>
<tr>
<td>Ogółem nieprawidłowości</td>
<td></td>
<td>274 próbk</td>
</tr>
</tbody>
</table>

Wśród 5 768 próbek surowicy uzyskanej z krwi pobieranej do badań rutynowych 359 były to próby wykazujące hemolizę. W większości próbek (273) hemoliza była lekka, a w 86 surowicach nasilona. Hiperbilirubinemię obserwowano w 302 próbkach, z czego w 248 surowicach była niewielka, natomiast w 54 surowicach była nasilona. Lipemia była widoczna w 237 próbkach, w tym w 34 była nasilona, natomiast w 203 niewielka. (Tabela VII).

Tabela VII

Wyniki oceny próbek surowicy uzyskanej z próbki pobieranych do wykonania w trybie rutynowym.

<table>
<thead>
<tr>
<th>Liczba wszystkich próbek</th>
<th>Liczba próbek w trybie rutynowym</th>
<th>Tryb rutynowy wykonywania badań</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hemoliza</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nasilona</td>
</tr>
<tr>
<td>6 908</td>
<td>5 768</td>
<td>86</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>1,49</td>
</tr>
<tr>
<td>Ogółem nieprawidłowości</td>
<td></td>
<td>898 próbk</td>
</tr>
</tbody>
</table>

Dyskusja

Problem oceny błędów przedanalitycznych jest trudny, głównie ze względu na różny sposób ich badania. Jednak pomimo tej heterogenejności można mówić o ogólnych tendencjach, wskazujących na rozkład różnego rodzaju błędów pomiędzy poszczególne fazy procesu powstawania wyniku badania. Zgodnie z danymi z piśmiennictwa większość błędów powstaje w fazie przedanalitycznej. *Piebani i Carraro* wykazali, że stanowią one 68,2%, podczas gdy 13,3% dotyczy fazy analitycznej, a 18,5% fazy poanalitycznej [10].

W przedstawionych badaniach własnych skupiono się na błędzie przedlaboratoryjnym, związanym z nieprawidłowym pobraniem krwi, a także na możliwości interfierencji ze strony czynników niezależnych (hiperbilirubinemia, lipemia, niewielkiego stopnia hemoliza), pomijając fazę postanalityczną. Na 28 788 próbek krwi odrzucono 352, czyli 1,22%. *Lippi* i wsp. stwierdzili, że spośród 423 075 próbek 3154 było obciążone błędem, co stanowiło 0,74% wszystkich próbek poddanych ocenie. W innych badaniach tych samych autorów oceniano 351 próbek 153 pacjentów szpital-
nych z których odrzucono 0,82% i 71 922 pacjentów ambulatoryjnych u których procent błędnych pobrani był mniejszy i wynosił 0,37, w czym odsetek skrzepów w próbkach pobranych na antykoagulant wynosił tylko 0,08%. Próbki, pochodzące od pacjentów leczonych w szpitalu pobierał personel medyczny z danego oddziału, podczas gdy u pacjentów ambulatoryjnych krew pobierał personel laboratorium zaznajomiony ze standardami pobrania i rozumiający celowość ich stosowania [6]. Materiał własny oparty był w przeważającej części na próbkach pobieranych przez często zmieniające się pielęgniarki na oddziałach, w tym na oddziałach intensywnego nadzoru (łącznie z pooperacyjnymi).

W tabeli VIII przedstawiono wyniki badań własnych w odniesieniu do badań w/w autorów. Dane procentowe podano w odniesieniu do liczby próbek, ocenianych pod kątem danego błędu.

W badaniach własnych najczęstszymi nieprawidłowościami jest hemoliza, stanowiąca przyczynę 44% odrzucenia, co jest zgodne z wynikami innych autorów [3,6,7,9]. Znacznie wyższy jest odsetek prób odrzuconych z powodu skrzepu lub mikroskrzepów, który wynosi aż 49%, podczas gdy inni autorzy podają wartości niższe [6,8]. Najczęściej obecność skrzepów stwierdzono w badaniach gazometrycznych, co wynika najprawdopodobniej z trudności w dokładnym wymieszaniu krwi, znajdującej się w strzykawce, a także z ciężkiego stanu ogólnego chorych i braku kooperacji z ich strony. Z doświadczeń własnych wynika, że identyfikacja obecności mikroskrzepów w próbkach pobieranych na antykoagulant musi mieć miejsce zarówno przy przyjęciu próbki do laboratorium, jak i na stanowisku roboczym, co dotyczy głównie próbek na badanie morfologii i układu krzepnięcia. Obecność mikroskrzepów w przeważającej liczbie przypadków identyfikowano dopiero po przelaniu próbki krwi do innej próbówki, a powodem ich poszukiwania był nieprawidłowy wynik oznaczenia płytek w badaniu morfologii krwi, czy niskie stężenie fibrynogenu w próbkach do badań układu krzepnięcia. Ten problem nie jest podejmowany w dostępnym piśmiennictwie, a z praktycznego punktu widzenia wydaje się być bardzo istotny.

Do innych błędów, często identyfikowanych zarówno podczas badań własnych, jak i innych autorów należą również: niewystarczająca ilość materiału, użycie nieprawidłowej próbówki, a także błędy identyfikacyjne, które według niektórych danych wynoszą około 2,5% wszystkich błędów [10]. W badaniach własnych nie oceniano próbek pobranych z płynem infuzyjnym jak w pracy Lippii i wsp. [6].

Błędy typowo przedanalizyczne to w dużej mierze przedlaboratoryjne, związane z samym procesem pobrania krwi i dlatego podkreśla się istotę

<table>
<thead>
<tr>
<th>Rodzaj próbek</th>
<th>Lippii i wsp. nieprawidłowości (%)</th>
<th>Badania własne nieprawidłowości (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wszystkie oceniane</td>
<td>N = 351 153 0,82</td>
<td>N = 28 788 1,22</td>
</tr>
<tr>
<td>Pobrane na antykoagulant % z obecnością skrzepu</td>
<td>N = 145 250 0,25</td>
<td>N = 16 088 1,1</td>
</tr>
<tr>
<td>Liczba próbek % z hemolizą</td>
<td>N = 256 782 0,77</td>
<td>N = 17 869 0,9</td>
</tr>
</tbody>
</table>

Tabela VIII
komunikacji pomiędzy personelem pracującym bezpośrednio z pacjentem, a pracownikami laboratorium, a także właściwie prowadzoną edukację [2,8,9]. Zgodnie z regulacjami prawnymi w Polsce, laboratorium jest zobowiązane przygotować instrukcje pobierania materiału i przeszkolić personel pobierający, bez względu na podległość służbową tych osób.

Nieco odrebnym zagadnieniem, jednak również związanym z wiarygodnością wyników i potencjalnym zagrożeniem powstania błędów, jest ocena możliwości wpływu niezależnych od błędu ludzkiego czynników interferujących. Opsywane są wpływy leków, a także właściwości surowicy, nato miast nie ma nawet orientacyjnych danych liczbowych w jakim procentie próbek włączanych do analizy czynniki takie stanowią rzeczywiste lub potencjalne zagrożenie powstania błędnego wyniku [3,5]. Z danych własnych wynika, że w 11,9% próbek surowicy i osewca zakwalifikowanych do oznaczeń stwierdzono czynniki, mogące mieć niekorzystny wpływ na wynik (hemoliza o niewielkim nasileniu, bilirubina i lipemia). W próbkach surowic analizowanych w trybie pilnym odsetek ten wynosił 24,04% z przewagą hiperbilirubinemii, co jest wytłumaczalne dla szpitala z dużą ilością patologii wątroby i dróg żółciowych, przyjmowanych również w trybie nagłym. W surowicach od pacjentów badanych w trybie rutynowym odsetek ten był mniejszy i wynosił 15,57% z mniej więcej równym rozkładem udziału w/w czynników.

Czynników interferujących nie można uniknąć, ale świadomość dotycząca częstotliwości ich występowania jest konieczna do odpowiedniej organizacji laboratorium i form współpracy z personel bezpośrednio opiekującym się pacjentem – lekarzem i pielęgniarką.

Wnioski

1. W wyniku błędów przedlaboratoryjnych 1,22% próbek krwi pobranych na skrzep lub antykoagulant zostało odrzuconych.
2. Najczystszymi przyczynami odrzucenia próbek była hemoliza i w przypadkach krwi z antykoagulantem skrzepy lub mikrokrzepy.
3. Średnio 11,9% próbek surowicy i osewca zawierało niezależne od pobrania czynniki potencjalnie interferujące (hiperbiliburinemii, lipemia, hemoliza) przy czym udział procentowy tych czynników w próbkach surowic badanych w trybie pilnym był istotnie wyższy niż w trybie rutynowym.

Piśmiennictwo

Adres Autorów:
Zakład Diagnostyki Laboratoryjnej
Wydziału Nauki o Zdrowiu
Akademii Medycznej, Warszawa

(Praca wpłynęła do Redakcji: 2007-10-06)
(Praca przekazana do opublikowania: 2007-12-17)