Inhibitory reduktazy HMG-CoA, mechanizmy działania oraz zastosowanie w terapii udaru niedokrwiennego mózgu

Celem prezentowanej pracy poglądowej jest charakterystyka działania oraz zastosowanie inhibitorów reduktazy 3-hydroksy-3-metyloglutarylo CoA (HMG-CoA) – statyn, w terapii oraz zapobieganiu wystąpienia udaru niedokrwiennego mózgu. Przedstawiono zarówno klasyczny, jak i pleiotropowy mechanizm działania statyn. Stabilizujący wpływ inhibitorów reduktazy HMG-CoA na blaszkę mięśzcycową, jak również ich przeciwpalne oraz antyoksydacyjne właściwości, może mieć istotny wpływ na zmniejszenie ryzyka zachorowania, przebieg choroby oraz stan kliniczny pacjentów po przebyciu niedokrwiennego udaru mózgu.

Słowa kluczowe: statyny, udar niedokrwien ny mózgu

Summary

HMG-CoA REDUCTASE INHIBITORS, MECHANISMS OF ACTING AND A ROLE IN THE THERAPY OF THE ISCHEMIC STROKE

The aim of this review was the analysis of 3-hydroxy-3-methylglutharyl (HMG)-CoA reductase inhibitors and their usefulness in the prevention and the therapy of the ischemic stroke. Both the classic and the pleiotropic mechanisms of action were discussed in this paper. The stabilization of precerebral atherosclerotic plaques and anti-inflammatory or antioxidant properties of statins could have a significant influence on the decrease of the risk, severity and clinical status of patients after the ischemic stroke.

Key words: statins, ischemic stroke
Charakterystyka inhibitorów reduktazy HMG-CoA


Biologiczne działanie statyn

Klasyczny mechanizm działania. Główne działanie statyn polega na specyficznym, kompetencyjnym i odwracalnym blokowaniu reduktazy HMG-CoA, kluczowego enzymu w szalaku syntez cholesterolu [8] (ryc. 1). Reduktaza HMG-CoA katalizuje przekształcanie HMG-CoA do mevalonianu, z którego w dalszych etapach powstaje cholesterol oraz związki izoprenoidowe. W reakcji katalizowanej przez reduktazę następuje utlenienie dwóch cząsteczek NADPH + H⁺ oraz zostaje odczyniony CoA. Endogennym

Rycina 1
Schemat syntetyz cholesterolu oraz związki izoprenoidowe (FPP i GGPP).
Statyny hamują konwersję HMG-CoA do mevalonianu katalizowaną przez reduktazę. Linią przerywaną zaznaczono ciąg wielu reakcji.
inhibitorowem tego enzymu jest końcowy produkt szlaku – cholesterol [4]. Zaha¬
manowanie aktywności reduktazy HMG-CoA przez statyny in vivo rozwij¬
a się bezpośrednio po dotarciu związku do komórki docelowej (hepatocyty) i
przekształceniu leku w postać aktywną. Skutkiem zahamowania syntetyz¬
cholesterolu jest nasilenie ekspresji genu kodującego receptor dla LDL (low
density lipoproteins), wzrost ilości receptorów w błonie komórkowej
hepatocyty oraz zwiększony wychwyt lipoprotein LDL i IDL (intermedi¬
date density lipoproteins). Ponieważ spadek stężenia LDL w surowicy krwi jest
związany ze wzrostem liczby receptorów dla LDL, efekt hipolipemizujący
uważa się dopiero po około 2 tygodniach od rozpoczęcia stosowania
statyn [13]. Najistotniejszą zmianą dotyczącą profilu lipidowego w trakcie
stosowania statyn jest zmniejszenie ilości cholesterolu związanego z LDL
oraz niewielki wpływ na obniżenie triglicerydów w surowicy krwi. Badania
prowadzone w warunkach in vitro wykazały ponadto, iż statyny hamują
syntęzę apoproteiny B-100, białka biorącego udział w budowie LDL, jak
i w VLDL (very low density lipoproteins) [40].

Pleiotropowy mechanizm działania. Działanie pleiotropowe statyn
jest rozumiane jako wielokierunkowe, występujące poza ramy klasycznego
działania hipolipemizującego. Pleiotropowe działanie nie ma bezpośredniego
powiązania ze zmniejszeniem stężenia cholesterolu. Może mieć związek
zarówno z zahamowaniem reduktazy HMG-CoA, a przez to zmniejszeniem
syntetyz jednostek izoprenoidowych służących do postranslacyjnej modyfikacji
niewielkich białek, jak również działanie to można wiązać z innymi,
swoistymi miejscami uchwyty leku [39].

W trakcie syntetyz cholesterolu dochodzi do powstania piętnastowęgiowo¬
ego pirosfosforanu farnezylu (farnesy1 pyrophosphate, FPP). FPP może
stać się substratem dla syntetyz skalenowej, efektem czego jest powstanie
skalenu, a w dalszych etapach cholesterolu. FPP jest również prekuro¬
rem w syntezie dolicholu oraz ubichinonu [4]. W wyniku kondensacji FPP
z pirosfosforanem izopentenylu (isopentenyl pyrophosphate, IPP) powstaje
dwudziestowęgły związku izoprenoidalowy – pirosfosforan geranyleranlu
(geranylegeranyl pyrophosphate, GGPP) [14]. Zarówno FPP, jak i GGPP jest
wykorzystywany w posttranslacyjnej izoprenylacji głównie niewielkich bia¬
łek włączających GAP (GTP-binding proteins), takich jak Ras oraz podobnych
do Ras białek Rho, Rab, Rac, Ral i Rap [21]. Ras ulega farnezylacj, natomiast
pozostałe białka ulegają izoprenylacji w wyniku dołączenia GGPP [24]. Wy¬
miennie białka mogą występować w dwóch formach: aktywnej (blonowej),
zuwiązanej z GTP oraz nieaktywnej (cytoplazmatycznej), związanej z GDP.

W cytoplazmie dochodzi do izoprenylacji nieaktywnej formy białka w wy¬
kurzaniu działania geranyleranylo- lub farnezylotransferyzy. Izoprenylowane
białko ulega translokacji z cytoplazmy do błony komórkowej, w obrębie
której GDP wymieniany jest na GTP – białko przybiera formę aktywną.

Reakcja ta jest katalizowana przez czynniki wymieniający nukleotydy guani¬
owe (guanine nucleotide exchange factor, GEF). Aktywne białko tworzy
kompleks z kinazą (np. Rho-GTP/Kinaza Rho), który wywiera efekt na
dalsze procesy biochemiczne. W wyniku zahamowania czynności reduktazy
HMG-CoA dochodzi do zmniejszenia syntetyz związków izoprenoidowych,
w tym FPP i GGPP oraz spadku aktywności procesu farnezylacj i geranyl-
Efekty plejotropowego działania statyn

geralnyacji białek wiążących GTP, dowodem czego jest gromadzenie się nieaktywnych form tych białek w cytoplazmie [21, 24].

Większość efektów plejotropowego działania statyn związana jest ze zmniejszeniem izoprenylacji białek Ras oraz Rho.

Efektem wynikającym ze zmniejszenia izoprenylacji białka Rho jest spadek aktywności NF-κB (nuklear factor kappa B), kluczowego związku regulującego ekspresję wielu biologicznie czynnych związków przepalalnych; cytokin, chemokin, cząstek adhezyjnych [32] oraz niektórych metaloproteinaz macierzy zewnętrzkomórkowej (matrix metalloproteinases, MMPs) [23, 24]. Statyny wywierają hamujący wpływ na: TNF-α (tumor necrosis factor-α), IL-1β (interleukin-1β), IL-6 (interleukin 6), MCP-1 (monocyte chemotactic protein-1) i RANTES (regulated on activation, normal T-cell expressed and secreted) [10, 39]. Zmniejszają również uwalnianie cytokin oraz chemicznych poprzez wzrost ekspresji receptora PPAR-α (peroxisome proliferator activated receptor-α) oraz PPAR-γ [28]. Przeciwczapalne działanie statyn potwierdza fakt, iż leki z tej grupy zmniejszają stężenie CRP (c-reactive protein) w surowicy pacjentów bez względu na poziom cholesterolu we krwi [17]. Inhibitory reduktazy HMG-CoA aktywują śródblonkową syntazę tlenku azotu (eNOS) [22, 25], efektem czego jest wyraźny wzrost stężenia tlenku azotu (nitric oxide, NO) w ścianie naczyń krwionośnych. Wazodilatacyjne właściwości NO przyczyniają się do poprawy krążenia krwi w narządach, w tym także tkanki mózgowej [7]. Obecność śródblonkowego NO pociąga za sobą dalsze zmiany biochemiczne; obniżenie ekspresji śródblonkowych selektyn (E- i P-selektyny), molekuł adhezyjnych VCAM-1 (vascular adhesion molecule-1), ICAM-1 (intercellular adhesion molecule-1) [39] oraz nasilenie procesu angiogenezy w wyniku wzrostu poziomu VEGF (vascular endothelial growth factor) [33]. Podobnie angiogenezy przez statyny jest również związane z ich wpływem na zwiększenie liczby oraz aktywność szpikopochodnych progenitorowych komórek śródblonka (endothelial progenitor cells, EPG) [26]. Aktywacja eNOS odbywa się przy pomocy dwóch odrębnych mechanizmów [38]. Z jednej strony, statyny, hamując gerańyleranycję białka Rho oraz wpływającą na deintegrację aktywnego cytoszkieleto komórki, wydłużają czas półtrwania eNOS mRNA, z drugiej strony, spadek syntezy mewalonienu pobudza aktywność szlaku fosfatydylinozotolo-3/Akt kinazy (PL3K/Akt), który odpowiada za aktywację eNOS na drodze fosforylacji [25]. Nie wykazano bezpośredniego wpływu inhibitorów reduktazy HMG-CoA na pobudzenie transkrypcji eNOS [22]. Niektóre doświadczenia pokazują modulujący wpływ terapii statynami na indukowalną formę syntazy tlenku azotu (iNOS). Lowastatyna okazała się mieć hamujący wpływ na aktywację iNOS indukowaną cytokinami w szczuczych astrocytach oraz makrofagach [37]. Zmniejszenie syntezy endotelininy-1 (ET-1) oraz ekspresji receptora dla angiotensyny (AT1) pod wpływem statyn dodatkowo zmniejsza napięcie mięśni glądnych, przyczyniając się do rozszerzenia naczyń i polepszenia lokalnego przepływu krwi [25, 30]. Związki z grupy statyn w istotny sposób wpływają na procesy hemostazy. Nasilają ekspresję cyklooxygenazy-2 (COX-2) w mięśniach glądnych oraz śródblonka naczyni, zmniejszając stężenie inhibitora plazm-
nogenu (plasminogen activator inhibitor-1, PAI-1) oraz zwiększają stężenie tkankowego aktywatora plazminogenu (tissue plasminogen activator, t-PA). Efektem tych zmian jest ułatwienie procesu fibrynozylizy oraz jednocześnie zahamowanie agregacji trombocytów [6, 9]. Zmniejszenie migracji leukocytów przez środłonek naczyń pod wpływem inhibitorów reduktazy HMG-CoA wynika ze spadku ekspresji molekuł adhezyjnych, takich jak ICAM-1 [31] oraz integryna LFA-1 (leukocyte function antigen-1), Mac-1 i VLA-4 (very late antigen-4) [39], jak również w wyniku bezpośredniego działania statyn na integrynę LFA-1, będącą receptorem dla ICAM-1, -2 oraz -3 [18]. Działanie na LFA-1 ma charakter swoisty, związki te nie hamują aktywności innych integryn. Statyny wiążą się z określonym miejscem, nazwanym „miejscem lowastatyny” (lovastatin site, L-site), znajdującym się na podjednostce β integryny [24]. Związanie statyny z podjednostką β LFA-1 powoduje allosteryczną zmianę konformacji jej cząsteczki oraz blokowanie przejściu formy nieaktywnej do formy aktywnej integryny. Statyny, stabilizując nieaktywną formę LFA-1, uniemożliwiają interakcje z molekulami adhezyjnymi [27]. Spadek migracji leukocytów przez barierę krew-mózg może przyczynić się do zmniejszenia nasilenia stanu zapalnego w obrębie niedokrwionej tkanki mózgowej.

Właściwości antyoksydacyjne posiadają hydroksypochodne metabolity atorwastatyny [3]. Antyoksydacyjny wpływ statyn wiąże się również ze zmniejszeniem aktywności oksydazy NAD(P)H w komórkach naczyń krwionośnych [34]. W regulacji aktywności oksydazy NAD(P)H bierze udział geranylgeranylowane białko Rac1 [24]. W wyniku zmniejszenia ekspresji antigenów zgodności tkankowej MHC II (major histocompatibility complex II) inhibitory reduktazy HMG-CoA posiadają wpływ immunomodulujący efektem czego jest zmniejszenie częstości odrzucania przeszkopów narządów wewnętrznych podczas stosowania statyn [19, 20].


Ze względu na wpływ na całą gamę procesów biochemicznych daleko wykraczających poza działanie hipolipemizujące, statyny znalazły zastosowanie w leczeniu i prevencji wielu chorób, głównie sercowo-naczyniowych, jak również udarów mózgu. Uważa się, że plejotropowy mechanizm działania inhibitorów reduktazy HMG-CoA może być odpowiedzialny za ich właściwości neuroprotekcyjne, do których zalicza się: wzrost aktywności eNOS, wzrost ekspresji t-PA oraz spadek ekspresji PAI-1, zmniejszenie syntezy endoteliny-1, zmniejszenie ekspresji receptora AT1, spadek aktywacji NF-kB oraz przepalnych cytokin i chemokin, wzrost ekspresji PPAR-α, spadek syntezy tromboksanu A2, spadek ekspresji i sekrecji niektórych MMP [30].

Statyny a choroby naczyniowe mózgu
Przeprowadzone badania na zwierzętach pokazały, iż myszy, którym podawano statyny na 2 tygodnie przed podwiązaniem tętnicy środkowej mózgu, miały o 25-30% większy mózgowy przepływ krwi oraz około 50% mniejszy obszar niedokrwienego uszkodzenia po wystąpieniu udaru w porównaniu do zwierząt nieotrzymujących statyn [12]. W przypadku wystąpienia udaru niedokrwienego mózgu, zaobserwowano korzystny wpływ wcześniejszego przyjmowania preparatów z grupy statyn na stan kliniczny pacjentów, oce- niany po siedmiu dniach od pojawienia się objawów choroby. Pilotażowe badanie oceniające potencjalne korzyści związane z włączeniem simwastaty- ny w dawce 40 mg/dobę w ciągu 12 godzin od pojawienia się objawów neurologicznych u pacjentów z potwierdzonym udarem niedokrwieniowym mózgu, przeprowadzone na grupie 56 osób (28 pacjentów z simwastatyną, 28 pacjentów z włączonym placebo) nie wykazało statystycznie istotnej różnicy w poprawie stanu klinicznego pacjentów z obu grup po 90 dniach od rozpoczęcia choroby, jednak całkowite ustąpienie objawów pojawiło się częściej wśród pacjentów otrzymujących simwastatynę (11 pacjentów otrzymujących statyn oraz 4 z placebo, p=0,035). Działanie simwastaty- ny wpływającej na obniżenie poziomu cholesterolu zawartego w LDL było zauważalne już w siedmioletnie dobie udaru (p<0,001) [29]. W kilku wieloos- ródkowych badaniach klinicznych przeprowadzonych w latach 90. wykazano istotne zmniejszenie ryzyka wystąpienia niedokrwienych udarów mózgu w przypadku stosowania w leczeniu preparatów z tej grupy. W badaniu CARE (Cholesterol And Recurrent Events) brało udział 4159 pacjentów po przebytym zawałe mięśnia sercowego, u których zastosowano prawastatynę w dawce 40 mg/dobę w porównaniu z placebo. Badanie wykazało staty- stycznie istotny spadek częstotliwości występowania udarów niedokrwieniowych mózgu o 31% (p<0,03) bez ryzyka wzrostu częstości udarów krtowotycznych [35]. Analiza retrospektywna badania 4S (Scandinavian Simvastatin Survival Study), w którym przedmiotem obserwacji była simwastatyna podawana pacjentom z rozpoznaną chorobą wieńcową w dawce 20 lub 40 mg/dobę, również wykazała istotny statystycznie spadek częstości występowania udarów niedokrwieniowych mózgu (o 28%) bez wpływu na udary o etiologii krtotycznej [36]. Badanie HPS (Heart Protection Study) wykazało istotne statystycznie zmniejszenie ryzyka udaru niedokrwieniowego mózgu o 22% u wszystkich chorych na cukrzycę leczonych simwastatyną w dawce 40 mg/dobę przez okres 5 lat. Częstotliwość powikłań udaru również zmniejszyła się o 25% [16].

Metaanaliza z 1997 roku przedstawia, iż stosowanie preparatów z grupy statyn zmniejsza istotnie statystycznie częstość występowania udarów niedokrwieniowych mózgu o około 30% u osób w średnim wieku [5]. Ciekawe spostrzeżenie dostarczyły dwa metaanalizy przeprowadzone w 1993 oraz 1995 roku, w których przeanalizowano 13 badań klinicznych. Wykazały one, że spadek ryzyka udaru niedokrwieniowego mózgu nie jest związany z obniżaniem poziomu cholesterolu w surowicy krwi [21]. W 1999 roku Na- rodowe Towarzystwo Udarów Mózgu w USA zarekomendowało stosowanie statyn w celu redukcji ryzyka wystąpienia udaru mózgu po przebytym zawałe serca. Obecne badania są ukierunkowane na poznanie korzyści wynikających z rozpoczęcia leczenia po pojawieniu się objawów udaru mózgu.
Ostatnie lata przyniosą nowe wiadomości na temat klinicznego wykorzystania pleiotropowego działania inhibitorów reduktazy HMG-CoA. Wydaje się, że dzięki antyoksydacyjnym, przeciwzapalnym oraz immunomodulującym właściwościom statyny mogą znaleźć zastosowanie nie tylko w leczeniu hipercholesterolemii, ale także chorób z zaznaczoną komponentą zapalną, takich jak choroby o podłożu autoimmunologicznym oraz udar medokwirnyei mózgu.

Podsumowanie

Pisemnictwo

Inhibitory reduktazy HMG-CoA, mechanizmy działania...


25. Liao JK. Effects of Statins on 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibition Beyond Low-Density Lipoprotein Cholesterol. *Am J Cardiol* 2003; 90(suppl): 24F-33F.


Adres Autorów:
Katedra i Zakład Biochemii i Biologii Molekularnej
ul. Chodźki 1,
20-093 Lublin
e-mail: kurzepa@gonet.pl

(Praca wpłychnięta do Redakcji: 2006-11-13)
(Praca przekazana do opublikowania: 2007-12-06)